Photo-electrons unveil topological transitions in graphene-like systems
نویسندگان
چکیده
The topological structure of the wavefunctions of particles in periodic potentials is characterized by the Berry curvature Ωkn whose integral on the Brillouin zone is a topological invariant known as the Chern number. The bulk-boundary correspondence states that these numbers define the number of edge or surface topologically protected states. It is then of primary interest to find experimental techniques able to measure the Berry curvature. However, up to now, there are no spectroscopic experiments that proved to be capable to obtain information on Ωkn to distinguish different topological structures of the bulk wavefunctions of semiconducting materials. Based on experimental results of the dipolar matrix elements for graphene, here we show that ARPES experiments with the appropriate x-ray energies and polarization can unambiguously detect changes of the Chern numbers in dynamically driven graphene and graphene-like materials opening new routes towards the experimental study of topological properties of condensed matter systems.
منابع مشابه
The physics of Kondo impurities in graphene.
This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss ...
متن کاملMerging of Dirac points and Floquet topological transitions in ac-driven graphene
We investigate the effect of an in-plane ac electric field coupled to electrons in the honeycomb lattice and show that it can be used to manipulate the Dirac points of the electronic structure. We find that the position of the Dirac points can be controlled by the amplitude and the polarization of the field for high-frequency drivings, providing a new platform to achieve their merging, a topolo...
متن کاملTopological insulator behavior of WS2 monolayer with square-octagon ring structure
We report electronic behavior of an allotrope of monolayer WS2 with a square octagon ring structure, refereed to as (so-WS2) within state-of-the-art density functional theory (DFT) calculations. TheWS2 monolayer shows semi-metallic characteristics with Dirac-cone like features around Г. Unlike p-orbital’s Dirac-cone in graphene, the Dirac-cone in the so-WS2 monolayer originates from the d-elect...
متن کاملObservation of intra- and inter-band transitions in the transient optical response of graphene
The transient optical conductivity of freely suspended graphene was examined by femtosecond time-resolved spectroscopy using pump excitation at 400 nm and probe radiation at 800 nm. The optical conductivity (or, equivalently, absorption) changes abruptly upon excitation and subsequently relaxes to its initial value on the time scale of 1 ps. The form of the induced change in the optical conduct...
متن کاملQuantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
Topological insulators are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to topological insulator-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. Here we establish the potential existence of topological proximity...
متن کامل